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        Abstract.  Finite element method flow and transport groundwater computations are 
very challenging because of the highly nonlinear nature of the unsaturated flow 
equations.  It is even more difficult to produce parallel versions of the associated 
computer program.  This paper describes the parallelization of a groundwater program 
called FEMWATER using the Message Passing Interface (MPI) paradigm.  It also 
addresses some computational issues and solutions obtained that arose during this 
process, such as efficiency of solvers.  FEMWATER does a Galerkinn finite element 
formulation for flow and uses an Eulerian-Lagrangian approach for transport.  Various 
boundary conditions are allowed, as well as density dependent coupled flow and transport 
for modeling salt-water intrusion.  Finally, an example of a flow problem will be given to 
demonstrate some results of this effort. 
 
        1.  Introduction.  FEMWATER (Lin, Richards, Talbot, Yeh, Cheng, Cheng, and 
Jones, 1997) is a legacy finite element program in the Groundwater Modeling System 
(GMS) (Groundwater Modeling Team) that does a Galerkinn formulation for flow and an 
Eulerian-Lagrangian approach for transport.  Various boundary conditions are allowed, as 
well as density dependent coupled flow and transport for modeling salt-water intrusion.  
Legacy programs are especially difficult to parallelize effectively as they tend to be less 
structured, and almost all the algorithms are inherently serial.  This paper describes some 
of the techniques used to produce a completely parallelized version of FEMWATER 
using the Message Passing Interface (MPI). 
 
      2.  Flow equations.  Pressure head in FEMWATER is modeled by applying 
conservation of mass to obtain, 
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(2.3)  ''S
dh
dSnF θβα ++=  

 
(2.4)  αρα g' 0=  
 
(2.5)  βρβ g' 0=  
 
where 
 
        α = compressibility of the soil medium. 
 
        β = compressibility of water. 
 
        δ = Dirac delta function. 
 
        ∇  = gradient operator. 
 
      fss = number of source / sinks for flow. 
 
         g = acceleration due to gravity. 
 
         h = pressure head. 
 
        hi = pressure head at node i. 
 
        K = hydraulic conductivity tensor. 
 
         n = porosity. 
 
       Ni = interpolation function = 1 at node i and = 0 at all the other nodes. 
 
         p = pressure. 
 
      Qm = quantity of flow at the mth source / sink node. 
 
         r = vector to (x, y, z) point in space. 
 
       rm = location of the mth source / sink node. 
 
        ρ = density with contaminant. 
 
       ρ0 = density without contaminant. 
 
      = density of m*

mρ th source / sink. 
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         S = saturation. 
 
          t = time. 
 
         θ = moisture content. 
 
What makes Eq. 2.1 so challenging to solve is that K and θ are functions of h, making the 
equation highly nonlinear.  
 
      Starting with the usual finite element approximation for pressure head 
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where N is the number of node points and Ni is an interpolation function with Ni = 1 at 
node i and Ni  = 0 at all the other nodes.  The Galerkin finite element equation is obtained 
by multiplying Eq. 2.1 by Ni, integrating over the volume of the mesh V, and then 
integrating by parts.  The equation for the ith node becomes 
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Here S2 is the part of the surface where the flux is known.  Specified pressure head occurs 
on S1.  Modifying Eq. 2.7 for the specified head nodes on S1 and using a fully implicit 
representation for time, the matrix version of Eq. 2.7 becomes 
 
(2.8)  [ ] { } { }( ) [ ] { } { }n1n1nn1n1n 'QthKthhM ∆∆ =+− ++++  
 
where [M] is analogous to a mass matrix in structures problems, [K] is analogous to a 
stiffness matrix in structures problems, and {Q´} is a collection of flow type terms for the 
right-hand side.  Eq. 2.8 is the resulting system of equations, where both [M] and [K] are 
symmetric. 
 
      3.  Parallel version for flow. The paradigm employed for creating the parallel 
version of FEMWATER is to modify the original source code as little as possible and 
have information exchanged across pe boundaries using MPI.  The five most important 
parts to achieving the parallel version of FEMWATER are now described. 
 
      3.1  Partitioning.  The finite element mesh must first be partitioned so that each 
processing element (pe) of the parallel computer has an equal share of the work.  For a 
structured grid, this is relatively easy, as block partitioning can be done (see Figure 
3.1.1).  However, for an unstructured mesh, partitioning is considerably more difficult, so 
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the program METIS (Karypis) is used.  A parallel program (part.c) was written to 
produce a file with a line for each node point stating which pe owns it. 
 
 

 
 

Figure 3.1.1.  Block partitioning. 
 
 
      3.2.  Ghost nodes.  Border elements (see Figure 3.2.1) are those elements that have 
nodes that they own and nodes that they do not (ghost nodes).  Each pe renumbers the 
owned nodes and elements to a local numbering system, and the ghost nodes and 
elements are placed at the end of their respective lists.  The ghost nodes are also sorted so 
that all that belong to a particular pe are together.  This allows the most efficient updating 
when the latest values of a certain variable such as pressure head are needed for the ghost 
nodes. 
 
 

PE 0

PE 1
Border Elements

Ghost Nodes for PE 1

Ghost Nodes for PE 0

 
 

Figure 3.2.1.  Owned nodes, ghost nodes, and border elements. 
 
 
      3.3.  Boundary conditions.  Boundary conditions can cause serious problems in 
performance as a specified head for a node in one pe can cause changes in equations for 
nodes in other pe’s.  However, if the border elements are kept by each pe rather than just 
one of the them, the boundary conditions are automatically properly done.  A program 
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(prep.f) that reads in the original data describing the mesh and boundary conditions was 
written to produce a new set of data in the same format for each pe.  This requires that 
local node and element numbers be put in the respective data files rather than the global 
ones so they remain consecutive.  A file containing mappings of local, global, and ghost 
node and element numbers is also written for each pe.  Thus when FEMWATER runs in 
parallel, each pe has its own data, and communications among pe’s are required in only a 
few places. 
 
      3.4.  Solvers.  Solvers take a major part of the computational time, and therefore 
special effort must be taken in the parallel version for them.  The original workhorse 
solver used in FEMWATER is a relaxation solver.  As in this relaxation solver, most 
solvers need more iterations as the number of pe’s increase, and so effective scaling is 
challenged.  The relaxation solver can be parallelized by a domain composition type 
method where Dirichlet boundary conditions are applied to the ghost nodes, and each pe 
computes a new value for their owned nodes only.  After each iteration cycle the ghost 
node values of pressure head are updated, and the process is continued until convergence. 
 
      This solver is generally slow converging, and it was found to be unacceptably slow 
for some problems such as those containing wells.  Thus, two conjugate gradient (CG) 
solvers with a main diagonal (MD) pre-conditioner and an Incomplete Cholesky (IC) pre-
conditioner (Dongara, Sorensen, and van der Vorst, 1998) were installed.  A CG solver is 
easily parallelized by computing local matrix-vector products and doing global sums 
using MPI_ALLREDUCE at the appropriate times.  The MD pre-conditioner creates no 
new parallel problems, but the IC pre-conditioner does.  Given the system of equations to 
solve, 
 
(3.4.1)   [ ]{ } { }bxA =
 
First transform Eq. 3.4.1 as follows: 
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where 
 
[D] is the diagonal part only of [A], and the non-zero elements of [D]1/2 are 
 
(3.4.3)  ii
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The pre-conditioner becomes 
 
(3.4.5)  [ ] [ ] [ ]( )[ ] [ ]( )U~IL~IK~ ++=  
 
where [I] is the identity matrix, [ ]L~  is the lower triangular part of [ ]A~ , and [ ]U~  is the 

upper triangular part of [ ]A~ .  Using this pre-conditioner requires the solution of equations 
like 
 
(3.4.6)   [ ] [ ]( ){ } { }ryU~I =+  
 
and 
 
(3.4.7)   [ ] [ ]( ){ } { }yzL~I =+  
 
which certainly do not scale very well for sparse systems.  What was done was to have 
each pe do its own sub-version of Eqs. 3.4.6 and 3.4.7 for its owned nodes only.  This 
requires setting some terms in [ ]L~  and [ ]U~  to zero, which makes the parallel version of 
the IC pre-conditioner somewhere between the MD and full IC pre-conditioner.  The 
resulting parallel solver has worked very well on all problems tested thus far. 
 
      3.5. Post-processing.  The parallel FEMWATER program, fwpar.f, writes out 
individual files for each pe using their respective numbering systems.  A program post.f 
was written to read in the output, assemble it into a global version, and write the same 
files that the serial version would write.  As parallel I/O is a current research topic, later 
versions of fwpar.f may be better done by doing the parallel I/O directly. 
 
      4.  Laboratory test problem.  The flow part of FEMWATER was tested by a set of 
data from a laboratory test problem (Vauclin, Khanji, and Vachaud, 1979).  The problem 
as shown in Figure 4.1 consists of flow in a homogeneous sand of saturated hydraulic 
conductivity Ks = 35 cm/hr.  The relative hydraulic conductivity from experiment is 
given by 
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where the hydraulic conductivity tensor is now 
 
(4.2)   IK srKk=
 
Also, 
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Figure 4.1.  Laboratory test problem. 
 
 
Due to symmetry, only half of the tank is shown.  The tank is 65 m. tall and 600 m. long 
with a specified water level of 35 m. maintained at both left and right boundaries 
throughout the experiment.  The top of the tank is initially covered, so the saturated water 
level is 35 m., and the soil is progressively drier as you go toward the top of the tank.  
Then the center 100 cm. of the tank is opened, and water at the rate of 14 cm/hr is 
released into the tank.  The saturated water surface (free surface) will begin to rise as 
shown in Figure 4.1. 
 
      This problem barely converges with the relaxation solver, but the IC CG solver gives 
consistent convergence.  B splines were implemented to represent the curves in Eqs. 4.2 
and 4.3 over piecewise linear, and convergence was improved yet again.  A Newton 
iteration scheme instead of the currently used Picarde method for the nonlinear iteration 
would most likely provide further improvement.  Figure 4.2 shows a plot of the free 
surface as determined in the laboratory and as computed on a Cray T3E using the 
relaxation solver.  Table 4.1 shows the scaled speed-up results where the problem size 
and the number of pe’s are increased the same amount.  Ideal is 100%.  When keeping 
the problem size the same, going from a problem on 2 pe’s to the same problem on 16 
pe’s on the Cray T3E, the parallel speed-up was 7.0.  When going from a problem on 4 
pe’s to the same problem on 32 pe’s on the Cray T3E, the parallel speed-up was 6.8. 
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Figure 4.2.  Free surface after 4 hr. 

 
 

Number of pe’s Scaled speed-up (%) 
1 100 
2 86.2 
4 81.5 
16 74.6 
32 67.6 

 
Table 4.1. Scaled speed-up. 

 
 
      5.  Transport equations.  Transport in FEMWATER where a constant partition 
coefficient between the water and solid phase is modeled by 
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where 
 
       aL = longitudinal diffusivity. 
 
       am = molecular diffusion coefficient. 
 
       aT = transverse diffusivity. 
 
        C = concentration. 
 
     C  = concentration of the contaminant in the water at the m source / sink.. *

m

 
        δ = Kronocker Delta tensor. 
 
       Ks = bidegridation rate for the solid phase. 
 
      Kw = bidegridation rate for the liquid phase. 
 
     Kws = partition coefficient between the liquid and solid phases. 
 
        λ = decay constant. 
 
       ρb = bulk density. 
 
        τ = tortuosity. 
 
        V = discharge velocity or flux. 
 
Eq. 5.1 is solved numerically by first doing a Lagrangian step and then an Eulerian one.  
This is done by operator splitting as follows: 
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where 
 
        T = the collection of terms multiplying C. 
 
      C* = concentration after the Lagrangian step. 
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      Cn = concentration at time t = n∆t. 
 
   Cn+1 = concentration at time t = (n+1)∆t. 
 
The Lagrangian step is done by solving 
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directly, which is back-tracking along the flow path.  That is, 
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This leaves the following Eulerian step to solve. 
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      6.  Parallel version for transport.  Eq. 5.7 is the same type as Eq. 2.1, so this poses 
no new complication.  However, the backtracking step of Eq. 5.6 does.  This is because 
the flow path could lead the computations across one or more pe boundaries.  As 
backtracking does not involve a system of equations to solve, it is rather fast.  The 
solution is to check in only the elements that contain the given node where C* is to be 
computed.  If the flow line has gone past these elements, reduce the backtracking time 
step until all backtracking falls inside these immediately neighboring elements, which are 
present in memory in each pe because of the overlapping already needed for flow and 
transport boundary conditions.  Repeat these sub-steps until the full ∆t is completed.  This 
has worked very well for all problems tested thus far.  Future papers will present detailed 
results. 
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